mandel-6502/mandel.s
Brion Vibber 32bd5a540c flesh out the mandelbrot iteration loop
some bits i missed increased total to:
1939 - 3007 cycles per iteration

probably still buggy, will test later :D
2023-01-06 17:18:13 -08:00

383 lines
7.9 KiB
ArmAsm

; Our zero-page vars
sx = $80 ; 8 bits: screen pixel x
sy = $81 ; 8 bits: screen pixel y
cx = $82 ; 16 bits fixed point
cy = $84 ; 16 bits fixed point
zx = $86 ; 16 bits fixed point
zy = $88 ; 16 bits fixed point
zx_2 = $8a ; 32 bits fixed point
zy_2 = $8e ; 32 bits fixed point
zx_zy = $92 ; 32 bits fixed point
dist = $96 ; 32 bits fixed point
iter = $9a ; 8 bits iteration count
temp = $a0 ; debug temp area
; FP registers in zero page
FR0 = $d4
FRE = $da
FR1 = $e0
FR2 = $e6
.code
.export start
; 2 + 9 * byte cycles
.macro add bytes, dest, arg1, arg2
clc ; 2 cyc
.repeat bytes, byte ; 9 * byte cycles
lda arg1 + byte
adc arg2 + byte
sta dest + byte
.endrepeat
.endmacro
.macro add16 dest, arg1, arg2
add 2, dest, arg1, arg2
.endmacro
.macro add32 dest, arg1, arg2
add 2, dest, arg2, dest
.endmacro
; 2 + 9 * byte cycles
.macro sub bytes, dest, arg1, arg2
sec ; 2 cyc
.repeat bytes, byte ; 9 * byte cycles
lda arg1 + byte
sbc arg2 + byte
sta dest + byte
.endrepeat
.endmacro
.macro sub16 dest, arg1, arg2
sub 2, dest, arg1, arg2
.endmacro
.macro sub32 dest, arg1, arg2
sub 4, dest, arg1, arg2
.endmacro
.macro shl bytes, arg
asl arg
.repeat bytes-1
rol arg
.endrepeat
.endmacro
.macro shl16 arg
shl 2, arg
.endmacro
.macro shl24 arg
shl 3, arg
.endmacro
.macro shl32 arg
shl 4, arg
.endmacro
; 6 * bytes cycles
.macro copy bytes, dest, arg
.repeat bytes, byte ; 6 * bytes cycles
lda arg + byte ; 3 cyc
sta dest + byte ; 3 cyc
.endrepeat
.endmacro
.macro copy16 dest, arg
copy 2, dest, arg
.endmacro
.macro copy32 dest, arg
copy 4, dest, arg
.endmacro
; 2 + 8 * byte cycles
.macro neg bytes, arg
sec ; 2 cyc
.repeat bytes, byte ; 8 * byte cycles
lda #00 ; 2 cyc
sbc arg + byte ; 3 cyc
sta arg + byte ; 3 cyc
.endrepeat
.endmacro
; 18 cycles
.macro neg16 arg
neg 2, arg
.endmacro
; 34 cycles
.macro neg32 arg
neg 4, arg
.endmacro
; inner loop for imul16
; bitnum < 8: 25 or 41 cycles
; bitnum >= 8: 30 or 46 cycles
.macro bitmul16 arg1, arg2, result, bitnum
.local zero
.local one
.local next
; does 16-bit adds
; arg1 and arg2 are treated as unsigned
; negative signed inputs must be flipped first
; 7 cycles up to the branch
; check if arg1 has 0 or 1 bit in this place
; 5 cycles either way
.if bitnum < 8
lda arg1 ; 3 cyc
and #(1 << bitnum) ; 2 cyc
.else
lda arg1 + 1 ; 3 cyc
and #(1 << (bitnum - 8)) ; 2 cyc
.endif
bne one ; 2 cyc
zero: ; 18 cyc, 23 cyc
lsr result + 3 ; 5 cyc
jmp next ; 3 cyc
one: ; 32 cyc, 37 cyc
; 16-bit add on the top bits
clc ; 2 cyc
lda result + 2 ; 3 cyc
adc arg2 ; 3 cyc
sta result + 2 ; 3 cyc
lda result + 3 ; 3 cyc
adc arg2 + 1 ; 3 cyc
ror a ; 2 cyc - get a jump on the shift
sta result + 3 ; 3 cyc
next:
ror result + 2 ; 5 cyc
ror result + 1 ; 5 cyc
.if bitnum >= 8
; we can save 5 cycles * 8 bits = 40 cycles total by skipping this byte
; when it's all uninitialized data
ror result ; 5 cyc
.endif
.endmacro
; 5 to 25 cycles
.macro check_sign arg
; Check sign bit and flip argument to postive,
; keeping a count of sign bits in the X register.
.local positive
lda arg + 1 ; 3 cyc
bpl positive ; 2 cyc
neg16 arg ; 18 cyc
inx ; 2 cyc
positive:
.endmacro
; 518 - 828 cyc
.macro imul16 dest, arg1, arg2
copy16 FR0, arg1 ; 12 cyc
copy16 FR1, arg2 ; 12 cyc
jsr imul16_func ; 470-780
copy32 dest, FR2 ; 24 cyc
.endmacro
; min 470 cycles
; max 780 cycles
.proc imul16_func
arg1 = FR0 ; 16-bit arg (clobbered)
arg2 = FR1 ; 16-bit arg (clobbered)
result = FR2 ; 32-bit result
ldx #0 ; 2 cyc
; counts the number of sign bits in X
check_sign arg1 ; 5 to 25 cyc
check_sign arg2 ; 5 to 25 cyc
; zero out the 32-bit temp's top 16 bits
lda #0 ; 2 cyc
sta result + 2 ; 3 cyc
sta result + 3 ; 3 cyc
; the bottom two bytes will get cleared by the shifts
; unrolled loop for maximum speed, at the cost
; of a larger routine
; 440 to 696 cycles
.repeat 16, bitnum
; bitnum < 8: 25 or 41 cycles
; bitnum >= 8: 30 or 46 cycles
bitmul16 arg1, arg2, result, bitnum
.endrepeat
; In case of mixed input signs, return a negative result.
cpx #1 ; 2 cyc
bne positive_result ; 2 cyc
neg32 result ; 34 cyc
positive_result:
rts ; 6 cyc
.endproc
.macro round16 arg
; Round top 16 bits of 32-bit fixed-point number in-place
.local zero
.local one
.local positive
.local negative
.local neg2
.local next
; no round - 5 cycles
; round pos, no carry - 17
; round pos, carry - 22
; round neg, no carry - 23
; round neg, carry - 28
; average = 5 / 2 + (17 + 22 + 23 + 28) / 8
; = 5 / 2 + 90 / 8
; = 2.5 + 11.25 = 13.75 cycles average on evenly distributed input
lda arg + 1 ; 3 cyc
bpl zero ; 2 cyc
one:
; check sign bit
lda arg + 3 ; 3 cyc
bpl positive ; 2 cyc
negative:
lda arg + 2 ; 3 cyc
beq neg2 ; 2 cyc
dec arg + 2 ; 5 cyc
jmp next ; 3 cyc
neg2:
dec arg + 2 ; 5 cyc
dec arg + 3 ; 5 cyc
jmp next ; 3 cyc
positive:
inc arg + 2 ; 5 cyc
beq next ; 2 cyc
inc arg + 3 ; 5 cyc
zero:
next:
.endmacro
.proc mandelbrot
; input:
; cx: position scaled to 4.12 fixed point - -8..+7.9
; cy: position scaled to 4.12
;
; output:
; iter: iteration count at escape or 0
; zx = 0
; zy = 0
; zx_2 = 0
; zy_2 = 0
; zx_zy = 0
; dist = 0
; iter = 0
lda #00
ldx iter - zx
initloop:
sta zx,x
dex
bne initloop
loop:
; 1939 - 3007 cyc
; iter++ & max-iters break = 7 cyc
inc iter ; 5 cyc
bne keep_going ; 2 cyc
rts
keep_going:
; 4.12: (-8 .. +7.9)
; zx = zx_2 - zy_2 + cx = 3 * 20 = 60 cyc
sub16 zx, zx_2, zy_2
add16 zx, zx, cx
; zy = zx_zy + zx_zy + cy = 3 * 20 = 60 cyc
sub16 zy, zx_zy, zx_zy
add16 zy, zy, cy
; 8.24: (-128 .. +127.9)
; zx_2 = zx * zx = 518 - 828 cyc
imul16 zx_2, zx, zx
; zy_2 = zy * zy = 518 - 828 cyc
imul16 zy_2, zy, zy
; zx_zy = zx * zy = 518 - 828 cyc
imul16 zx_zy, zx, zy
; dist = zx_2 + zy_2 = 38 cyc
add32 dist, zx_2, zy_2
; if dist >= 4 break, else continue iterating = 7 cyc
lda dist + 3 ; 3 cyc
cmp #4 ; 2 cyc
bmi still_in ; 2 cyc
rts
still_in:
; shift and round zx_2 to 4.12 = (60 + 5) - (60 + 28) = 65 - 88 cyc
.repeat 4 ; 60 cyc
shl24 zx_2 ; 15 cyc
.endrepeat
round16 zx_2 ; 5-28 cycles
; shift and round zy_2 to 4.12 = (20 + 5) - (20 + 28) = 65 - 88 cyc
.repeat 4 ; 60 cyc
shl24 zy_2 ; 15 cyc
.endrepeat
round16 zy_2 ; 5-28 cycles
; shift and round zx_zy to 4.12 = (20 + 5) - (20 + 28) = 65 - 88 cyc
.repeat 4 ; 60 cyc
shl24 zx_zy ; 15 cyc
.endrepeat
round16 zx_zy ; 5-28 cycles
; if may be in the lake, look for looping output with a small buffer
; as an optimization vs running to max iters
jmp loop ; 3 cycles
.endproc
.proc start
looplong:
; cx = -0.5
lda #$f7
sta cx
lda #$ff
sta cx + 1
; cy = 1
lda #$10
sta cy
lda #$00
sta cy + 1
jsr mandelbrot
; should have 32-bit -15 in FR2
; save the completed iter count for debugging
lda iter
sta temp
loop:
; keep looping over so we can work in the debugger
jmp looplong
.endproc