; FP registers in zero page FR0 = $d4 FRE = $da FR1 = $e0 FR2 = $e6 FRX = $ec EEXP = $ed NSIGN = $ee ESIGN = $ef FLPTR = $fc FPTR2 = $fe ; FP routines AFP = $D800 FASC = $D8E6 IFP = $D9AA FIP = $D9D2 ZFR0 = $DA44 ZFI = $DA46 FSUB = $DA60 FADD = $DA66 FMUL = $DADB FDIV = $DB28 PLYVEL = $DD40 FLD0R = $DD49 ; from pointer in X/Y FLD0P = $DD89 ; from pointer in FLPTR FLD1R = $DD89 FLD1P = $DD9c FST0R = $DDA7 FST0P = $DDAB FMOVE = $DDB6 ; FR0 -> FR1 EXP = $DDC0 EXP10 = $DDCC LOG = $decd LOG10 = $ded1 .code .export start .macro sext16to32 arg .local plus .local minus lda arg+1 asl ; sign -> carry lda #$ff bcc plus lda #$00 plus: sta arg+2 sta arg+3 .endmacro .macro copy bytes, arg1, arg2 .repeat 2, byte lda arg1+byte sta arg2+byte .endrepeat .endmacro .macro copy16 arg1, arg2 copy 2, arg1, arg2 .endmacro .macro copy32 arg1, arg2 copy 4, arg1, arg2 .endmacro ; 2 + 8 * byte cycles .macro neg bytes, arg sec ; 2 cyc .repeat bytes, byte ; 8 * byte cycles lda #00 ; 2 cyc sbc arg + byte ; 3 cyc sta arg + byte ; 3 cyc .endrepeat .endmacro ; 18 cycles .macro neg16 arg neg 2, arg .endmacro ; 34 cycles .macro neg32 arg neg 4, arg .endmacro .macro add bytes, arg1, arg2 clc .repeat bytes, byte lda arg1+byte adc arg2+byte sta arg1+byte .endrepeat .endmacro .macro add16 arg1, arg2 add 2, arg1, arg2 .endmacro .macro add32 arg1, arg2 add 4, arg1, arg2 .endmacro .macro shl bytes, arg asl arg .repeat bytes-1, byte rol arg+byte+1 .endrepeat .endmacro .macro shl16 arg shl 2, arg .endmacro .macro shl24 arg shl 3, arg .endmacro .macro shl32 arg shl 4, arg .endmacro .macro shr bytes, arg lsr arg .repeat bytes-1, byte ror arg+byte+1 .endrepeat .endmacro .macro shr16 arg shr 2, arg .endmacro .macro shr24 arg shr 3, arg .endmacro .macro shr32 arg shr 4, arg .endmacro .macro bitmul16 arg1, arg2, result, bitnum .local next ; does 16-bit adds ; arg1 must be 0 or positive ; arg2 must be 0 or positive clc ; check if arg1 has 0 or 1 bit in this place .if bitnum < 8 lda arg1 and #(1 << bitnum) .else lda arg1 + 1 and #(1 << (bitnum - 8)) .endif beq next ; 16-bit add on the top bits lda result + 2 adc arg2 sta result + 2 lda result + 3 adc arg2 + 1 sta result + 3 next: ; Shift the 32-bit result down by one bit, ; saving the previous carry. ror result + 3 ror result + 2 ror result + 1 .if bitnum >= 8 ; we can save 5 cycles * 8 bits = 40 cycles total by skipping this byte ; when it's all uninitialized data ror result .endif .endmacro .macro check_sign arg ; Check sign bit and flip argument to postive, ; keeping a count of sign bits in the X register. .local positive lda arg + 1 bpl positive neg16 arg inx positive: .endmacro .proc imul16 arg1 = FR0 ; 16-bit arg (clobbered) arg2 = FR1 ; 16-bit arg (clobbered) result = FR2 ; 32-bit result ldx #0 ; counts the number of sign bits in X check_sign arg1 check_sign arg2 ; zero out the 32-bit temp's top 16 bits lda #0 sta result + 2 sta result + 3 ; the bottom two bytes will get cleared by the shifts ; unrolled loop for maximum speed, at the cost ; of a larger routine .repeat 16, bitnum bitmul16 arg1, arg2, result, bitnum .endrepeat ; In case of mixed input signs, return a negative result. cpx #1 bne positive_result neg32 result positive_result: rts .endproc .proc iter ; (cx and cy should be pre-scaled to 6.26 fixed point) ; zx = 0 ; zy = 0 ; zx_2 = 0 ; zy_2 = 0 ; zx_zy = 0 loop: ; iters++ ; 6.26: ; zx = zx_2 + zy_2 + cx ; zy = zx_zy + zx_zy + cy ; round to 6.10. ; 12.20: ; zx_2 = zx * zx ; zy_2 = zy * zy ; dist = zx_2 + zy_2 ; if dist >= 4 break, else continue iterating ; round zx_2, zy_2, dist to 6.26 ; if may be in the lake, look for looping output with a small buffer ; as an optimization vs running to max iters .endproc .proc start loop: ; FR0 = 5 ; FR1 = -3 lda #5 sta FR0 lda #0 sta FR0 + 1 lda #$fd sta FR1 lda #$ff sta FR1 + 1 jsr imul16 ; should have 32-bit -15 in FR2 jmp loop .endproc