1092 lines
No EOL
25 KiB
JavaScript
1092 lines
No EOL
25 KiB
JavaScript
import {
|
|
writeFileSync
|
|
} from 'fs';
|
|
|
|
import Jimp from 'Jimp';
|
|
|
|
|
|
function repeat(val, n) {
|
|
let arr = [];
|
|
for (let i = 0; i < n; i++) {
|
|
arr.push(val);
|
|
}
|
|
return arr;
|
|
}
|
|
|
|
function zeroes(n) {
|
|
return repeat(0, n);
|
|
}
|
|
|
|
function toLinear(val) {
|
|
// use a 2.4 gamma approximation
|
|
// this is BT.1886 compatible
|
|
// and simpler than sRGB
|
|
let unit = val / 255;
|
|
unit **= 2.4;
|
|
return unit * 255;
|
|
}
|
|
|
|
function fromLinear(val) {
|
|
let unit = val / 255;
|
|
unit **= (1 / 2.4);
|
|
return unit * 255;
|
|
}
|
|
|
|
function fromSRGB(val) {
|
|
val /= 255;
|
|
if (val <= 0.04045) {
|
|
val /= 12.92;
|
|
} else {
|
|
val = ((val + 0.055) / 1.055) ** 2.4;
|
|
}
|
|
val *= 255;
|
|
return val;
|
|
}
|
|
|
|
function toSRGB(val) {
|
|
val /= 255;
|
|
if (val <= 0.0031308) {
|
|
val *= 12.92;
|
|
} else {
|
|
val = (val * 1.055) ** (1.0 / 2.4) - 0.055;
|
|
}
|
|
val *= 255;
|
|
return val;
|
|
}
|
|
|
|
class RGB {
|
|
constructor(r, g, b) {
|
|
this.r = r;
|
|
this.g = g;
|
|
this.b = b;
|
|
}
|
|
|
|
clone() {
|
|
return new RGB(this.r, this.g, this.b);
|
|
}
|
|
|
|
static fromHex(val) {
|
|
let r = (val >>> 16) & 0xff;
|
|
let g = (val >>> 8) & 0xff;
|
|
let b = val & 0xff;
|
|
return new RGB(r,g,b);
|
|
}
|
|
|
|
static fromGTIA(val) {
|
|
// This seems off from what Atari800 does
|
|
// https://forums.atariage.com/topic/107853-need-the-256-colors/page/2/#comment-1312467
|
|
let cr = (val >> 4) & 15;
|
|
let lm = val & 15;
|
|
let crlv = cr ? 50 : 0;
|
|
|
|
/*
|
|
let phase = ((cr - 1) * 25 - 58) * (2 * Math.PI / 360);
|
|
|
|
let y = 255 * (lm + 1) / 16;
|
|
let i = crlv * Math.cos(phase);
|
|
let q = crlv * Math.sin(phase);
|
|
|
|
let r = y + 0.956 * i + 0.621 * q;
|
|
let g = y - 0.272 * i - 0.647 * q;
|
|
let b = y - 1.107 * i + 1.704 * q;
|
|
*/
|
|
|
|
// PAL
|
|
let phase = ((cr - 1) * 25.7 - 15) * (2 * Math.PI / 360);
|
|
|
|
let y = 255 * (lm + 1) / 16;
|
|
let i = crlv * Math.cos(phase);
|
|
let q = crlv * Math.sin(phase);
|
|
|
|
let r = y + 0.956 * i + 0.621 * q;
|
|
let g = y - 0.272 * i - 0.647 * q;
|
|
let b = y - 1.107 * i + 1.704 * q;
|
|
|
|
return new RGB(r, g, b).clamp().fromSRGB();
|
|
}
|
|
|
|
map(callback) {
|
|
return new RGB(
|
|
callback(this.r),
|
|
callback(this.g),
|
|
callback(this.b)
|
|
);
|
|
}
|
|
|
|
fromNTSC() {
|
|
return this.map(toLinear);
|
|
}
|
|
|
|
toNTSC() {
|
|
return this.map(fromLinear);
|
|
}
|
|
|
|
fromSRGB() {
|
|
return this.map(fromSRGB);
|
|
}
|
|
|
|
toSRGB() {
|
|
return this.map(toSRGB);
|
|
}
|
|
|
|
clamp() {
|
|
return this.map((val) => {
|
|
if (val < 0) return 0;
|
|
if (val > 255) return 255;
|
|
return val;
|
|
});
|
|
}
|
|
|
|
inc(other) {
|
|
this.r += other.r;
|
|
this.g += other.g;
|
|
this.b += other.b;
|
|
return this;
|
|
}
|
|
|
|
add(other) {
|
|
return new RGB(
|
|
this.r + other.r,
|
|
this.g + other.g,
|
|
this.b + other.b
|
|
);
|
|
}
|
|
|
|
difference(other) {
|
|
return new RGB(
|
|
this.r - other.r,
|
|
this.g - other.g,
|
|
this.b - other.b
|
|
);
|
|
}
|
|
|
|
multiply(scalar) {
|
|
return new RGB(
|
|
this.r * scalar,
|
|
this.g * scalar,
|
|
this.b * scalar,
|
|
);
|
|
}
|
|
|
|
divide(scalar) {
|
|
return new RGB(
|
|
this.r / scalar,
|
|
this.g / scalar,
|
|
this.b / scalar,
|
|
);
|
|
}
|
|
|
|
magnitude() {
|
|
return Math.sqrt(this.magnitude2());
|
|
}
|
|
|
|
magnitude2() {
|
|
return this.r * this.r +
|
|
this.g * this.g +
|
|
this.b * this.b;
|
|
}
|
|
|
|
sum() {
|
|
return this.r + this.g + this.b;
|
|
}
|
|
|
|
lumaScale() {
|
|
return new RGB(
|
|
this.r * 0.299,
|
|
this.g * 0.586,
|
|
this.b * 0.114
|
|
);
|
|
}
|
|
|
|
luma() {
|
|
return this.lumaScale().sum();
|
|
}
|
|
}
|
|
|
|
/*
|
|
// snarfed from https://lospec.com/palette-list/atari-8-bit-family-gtia
|
|
// which was calculated with Retrospecs App's Atari 800 emulator
|
|
let atariRGB = [
|
|
0x000000,
|
|
0x111111,
|
|
0x222222,
|
|
0x333333,
|
|
0x444444,
|
|
0x555555,
|
|
0x666666,
|
|
0x777777,
|
|
0x888888,
|
|
0x999999,
|
|
0xaaaaaa,
|
|
0xbbbbbb,
|
|
0xcccccc,
|
|
0xdddddd,
|
|
0xeeeeee,
|
|
0xffffff,
|
|
0x190700,
|
|
0x2a1800,
|
|
0x3b2900,
|
|
0x4c3a00,
|
|
0x5d4b00,
|
|
0x6e5c00,
|
|
0x7f6d00,
|
|
0x907e09,
|
|
0xa18f1a,
|
|
0xb3a02b,
|
|
0xc3b13c,
|
|
0xd4c24d,
|
|
0xe5d35e,
|
|
0xf7e46f,
|
|
0xfff582,
|
|
0xffff96,
|
|
0x310000,
|
|
0x3f0000,
|
|
0x531700,
|
|
0x642800,
|
|
0x753900,
|
|
0x864a00,
|
|
0x975b0a,
|
|
0xa86c1b,
|
|
0xb97d2c,
|
|
0xca8e3d,
|
|
0xdb9f4e,
|
|
0xecb05f,
|
|
0xfdc170,
|
|
0xffd285,
|
|
0xffe39c,
|
|
0xfff4b2,
|
|
0x420404,
|
|
0x4f0000,
|
|
0x600800,
|
|
0x711900,
|
|
0x822a0d,
|
|
0x933b1e,
|
|
0xa44c2f,
|
|
0xb55d40,
|
|
0xc66e51,
|
|
0xd77f62,
|
|
0xe89073,
|
|
0xf9a183,
|
|
0xffb298,
|
|
0xffc3ae,
|
|
0xffd4c4,
|
|
0xffe5da,
|
|
0x410103,
|
|
0x50000f,
|
|
0x61001b,
|
|
0x720f2b,
|
|
0x83203c,
|
|
0x94314d,
|
|
0xa5425e,
|
|
0xb6536f,
|
|
0xc76480,
|
|
0xd87591,
|
|
0xe986a2,
|
|
0xfa97b3,
|
|
0xffa8c8,
|
|
0xffb9de,
|
|
0xffcaef,
|
|
0xfbdcf6,
|
|
0x330035,
|
|
0x440041,
|
|
0x55004c,
|
|
0x660c5c,
|
|
0x771d6d,
|
|
0x882e7e,
|
|
0x993f8f,
|
|
0xaa50a0,
|
|
0xbb61b1,
|
|
0xcc72c2,
|
|
0xdd83d3,
|
|
0xee94e4,
|
|
0xffa5e4,
|
|
0xffb6e9,
|
|
0xffc7ee,
|
|
0xffd8f3,
|
|
0x1d005c,
|
|
0x2e0068,
|
|
0x400074,
|
|
0x511084,
|
|
0x622195,
|
|
0x7332a6,
|
|
0x8443b7,
|
|
0x9554c8,
|
|
0xa665d9,
|
|
0xb776ea,
|
|
0xc887eb,
|
|
0xd998eb,
|
|
0xe9a9ec,
|
|
0xfbbaeb,
|
|
0xffcbef,
|
|
0xffdff9,
|
|
0x020071,
|
|
0x13007d,
|
|
0x240b8c,
|
|
0x351c9d,
|
|
0x462dae,
|
|
0x573ebf,
|
|
0x684fd0,
|
|
0x7960e1,
|
|
0x8a71f2,
|
|
0x9b82f7,
|
|
0xac93f7,
|
|
0xbda4f7,
|
|
0xceb5f7,
|
|
0xdfc6f7,
|
|
0xf0d7f7,
|
|
0xffe8f8,
|
|
0x000068,
|
|
0x000a7c,
|
|
0x081b90,
|
|
0x192ca1,
|
|
0x2a3db2,
|
|
0x3b4ec3,
|
|
0x4c5fd4,
|
|
0x5d70e5,
|
|
0x6e81f6,
|
|
0x7f92ff,
|
|
0x90a3ff,
|
|
0xa1b4ff,
|
|
0xb2c5ff,
|
|
0xc3d6ff,
|
|
0xd4e7ff,
|
|
0xe5f8ff,
|
|
0x000a4d,
|
|
0x001b63,
|
|
0x002c79,
|
|
0x023d8f,
|
|
0x134ea0,
|
|
0x245fb1,
|
|
0x3570c2,
|
|
0x4681d3,
|
|
0x5792e4,
|
|
0x68a3f5,
|
|
0x79b4ff,
|
|
0x8ac5ff,
|
|
0x9bd6ff,
|
|
0xace7ff,
|
|
0xbdf8ff,
|
|
0xceffff,
|
|
0x001a26,
|
|
0x002b3c,
|
|
0x003c52,
|
|
0x004d68,
|
|
0x065e7c,
|
|
0x176f8d,
|
|
0x28809e,
|
|
0x3991af,
|
|
0x4aa2c0,
|
|
0x5bb3d1,
|
|
0x6cc4e2,
|
|
0x7dd5f3,
|
|
0x8ee6ff,
|
|
0x9ff7ff,
|
|
0xb0ffff,
|
|
0xc1ffff,
|
|
0x01250a,
|
|
0x023610,
|
|
0x004622,
|
|
0x005738,
|
|
0x05684d,
|
|
0x16795e,
|
|
0x278a6f,
|
|
0x389b80,
|
|
0x49ac91,
|
|
0x5abda2,
|
|
0x6bceb3,
|
|
0x7cdfc4,
|
|
0x8df0d5,
|
|
0x9effe5,
|
|
0xaffff1,
|
|
0xc0fffd,
|
|
0x04260d,
|
|
0x043811,
|
|
0x054713,
|
|
0x005a1b,
|
|
0x106b1b,
|
|
0x217c2c,
|
|
0x328d3d,
|
|
0x439e4e,
|
|
0x54af5f,
|
|
0x65c070,
|
|
0x76d181,
|
|
0x87e292,
|
|
0x98f3a3,
|
|
0xa9ffb3,
|
|
0xbaffbf,
|
|
0xcbffcb,
|
|
0x00230a,
|
|
0x003510,
|
|
0x044613,
|
|
0x155613,
|
|
0x266713,
|
|
0x377813,
|
|
0x488914,
|
|
0x599a25,
|
|
0x6aab36,
|
|
0x7bbc47,
|
|
0x8ccd58,
|
|
0x9dde69,
|
|
0xaeef7a,
|
|
0xbfff8b,
|
|
0xd0ff97,
|
|
0xe1ffa3,
|
|
0x001707,
|
|
0x0e2808,
|
|
0x1f3908,
|
|
0x304a08,
|
|
0x415b08,
|
|
0x526c08,
|
|
0x637d08,
|
|
0x748e0d,
|
|
0x859f1e,
|
|
0x96b02f,
|
|
0xa7c140,
|
|
0xb8d251,
|
|
0xc9e362,
|
|
0xdaf473,
|
|
0xebff82,
|
|
0xfcff8e,
|
|
0x1b0701,
|
|
0x2c1801,
|
|
0x3c2900,
|
|
0x4d3b00,
|
|
0x5f4c00,
|
|
0x705e00,
|
|
0x816f00,
|
|
0x938009,
|
|
0xa4921a,
|
|
0xb2a02b,
|
|
0xc7b43d,
|
|
0xd8c64e,
|
|
0xead760,
|
|
0xf6e46f,
|
|
0xfffa84,
|
|
0xffff99,
|
|
].map((hex) => RGB.fromHex(hex).fromNTSC());
|
|
//].map((hex) => RGB.fromHex(hex));
|
|
*/
|
|
|
|
let atariRGB = [];
|
|
for (let i = 0; i < 256; i++) {
|
|
atariRGB[i] = RGB.fromGTIA(i);
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
* Dither RGB input data with a target palette size.
|
|
* If the number of used colors exceeds `n`, the
|
|
* palette will be reduced until it fits.
|
|
* @param {RGB[]} input source scanline data, in linear RGB
|
|
* @param {number[]} palette - current working palette, as Atari 8-bit color values (low nybble luminance, high nybble hue)
|
|
* @param {number} n - target color count
|
|
* @param {number} y
|
|
* @returns {{output: number[], palette: number[], error: RGB[]}}
|
|
*/
|
|
function decimate(input, palette, n) {
|
|
|
|
let width = input.length;
|
|
|
|
let inputPixel = (x, error) => {
|
|
let rgb = input[x].clone();
|
|
if (error) {
|
|
rgb = rgb.add(error.cur[x]);
|
|
}
|
|
return rgb.clamp();
|
|
};
|
|
|
|
// Apply dithering with given palette and collect color usage stats
|
|
let dither = (palette) => {
|
|
let error = {
|
|
cur: [],
|
|
next: [],
|
|
};
|
|
for (let i = 0; i < width; i++) {
|
|
error.cur[i] = new RGB(0, 0, 0);
|
|
error.next[i] = new RGB(0, 0, 0);
|
|
}
|
|
|
|
let output = zeroes(width);
|
|
let popularity = zeroes(palette.length);
|
|
let distance2 = 0;
|
|
|
|
let nextError = new RGB(0, 0, 0);
|
|
|
|
// Try dithering with this palette.
|
|
for (let x = 0; x < width; x++) {
|
|
let rgb = inputPixel(x, error);
|
|
|
|
// find the closest possible color
|
|
// @todo consider doing the difference scoring in luminance and hue spaces
|
|
let shortest = Infinity;
|
|
let pick = 1;
|
|
|
|
for (let i = 0; i < palette.length; i++) {
|
|
let diff = rgb.difference(atariRGB[palette[i]]);
|
|
let dist = diff.magnitude();
|
|
if (dist < shortest) {
|
|
nextError = diff;
|
|
shortest = dist;
|
|
pick = i;
|
|
}
|
|
}
|
|
|
|
output[x] = pick;
|
|
popularity[pick]++;
|
|
|
|
let share = (n) => nextError.multiply(n / 16);
|
|
|
|
error.cur[x + 1]?.inc(share(7));
|
|
error.next[x - 1]?.inc(share(3));
|
|
error.next[x ]?.inc(share(5));
|
|
error.next[x + 1]?.inc(share(1));
|
|
}
|
|
return {
|
|
output,
|
|
palette,
|
|
distance2,
|
|
popularity,
|
|
error: error.next
|
|
};
|
|
};
|
|
|
|
|
|
let decimated = palette.slice();
|
|
|
|
// force to grayscale
|
|
//decimated = [0, 5, 10, 15];
|
|
|
|
// force to rgb
|
|
//decimated = [0, 0x36, 0xb6, 0x86];
|
|
|
|
// force to rWb
|
|
//decimated = [0, 0x36, 0x0f, 0x86];
|
|
|
|
let reserved = [0]; // black
|
|
//reserved = [0, 15]; // black, white
|
|
//reserved = [0, 5, 10, 15]; // grayscale
|
|
//reserved = [0, 0x48, 0x78, 15]; // vaporwave
|
|
//reserved = [0, 0x3c, 0x78, 15]; // red/blue/white
|
|
|
|
/*
|
|
if (( y & 1 ) === 0) {
|
|
reserved = [0, 0x3c, 0x1e, 15]; // red/yellow/white
|
|
} else {
|
|
reserved = [0, 0x76, 0x9e, 0xb8]; // blue/cyan/green
|
|
}
|
|
*/
|
|
|
|
let keepers = zeroes(256);
|
|
for (let i of reserved) {
|
|
keepers[i & 0xfe] = 1; // drop that 0 luminance bit!
|
|
}
|
|
|
|
// Median cut!
|
|
// https://en.wikipedia.org/wiki/Median_cut
|
|
//let buckets = [input.slice()];
|
|
|
|
// preface the reserved bits
|
|
let buckets = reserved.slice().map((c) => [atariRGB[c]]).concat([input.slice()]);
|
|
if (input.length != 160) {
|
|
throw new Error('xxx bad input size');
|
|
}
|
|
|
|
/*
|
|
let buckets = [input.slice()];
|
|
if (reserved.length > 0) {
|
|
let pxPerReserved = input.length;
|
|
for (let c of reserved) {
|
|
for (let i = 0; i < pxPerReserved; i++) {
|
|
buckets[0].unshift(atariRGB[c]);
|
|
}
|
|
}
|
|
console.log(buckets[0].length, 'xxx');
|
|
}
|
|
*/
|
|
|
|
let magicSort = (picker) => (a, b) => {
|
|
let bychannel = picker(b) - picker(a);
|
|
if (bychannel) return bychannel;
|
|
|
|
let byluma = b.luma() - a.luma();
|
|
return byluma;
|
|
};
|
|
let medianCut = (bucket, range) => {
|
|
if (bucket.length < 2) {
|
|
throw new Error('short bucket');
|
|
}
|
|
//console.log('medianCut', bucket, range);
|
|
// Sort by the channel with the greatest range,
|
|
// then cut the bucket in two at the median.
|
|
if (range.g >= range.r && range.g >= range.b) {
|
|
//bucket.sort((a, b) => b.g - a.g);
|
|
bucket.sort(magicSort((rgb) => rgb.g));
|
|
} else if (range.r >= range.g && range.r >= range.b) {
|
|
//bucket.sort((a, b) => b.r - a.r);
|
|
bucket.sort(magicSort((rgb) => rgb.r));
|
|
} else if (range.b >= range.g && range.b >= range.r) {
|
|
//bucket.sort((a, b) => b.b - a.b);
|
|
bucket.sort(magicSort((rgb) => rgb.b));
|
|
}
|
|
let half = bucket.length >> 1;
|
|
//console.log('cutting', half, bucket.length);
|
|
let [bottom, top] = [bucket.slice(0, half), bucket.slice(half)];
|
|
//console.log({bottom, top});
|
|
return [bottom, top];
|
|
//return [bucket.slice(0, half), bucket.slice(half)];
|
|
};
|
|
while (buckets.length < n) {
|
|
// Find the bucket with the greatest range in any channel
|
|
let ranges = buckets.map((bucket) => {
|
|
if (bucket.length == 0) {
|
|
throw new Error('xxx empty bucket');
|
|
}
|
|
let red = bucket.map((rgb) => rgb.r);
|
|
let green = bucket.map((rgb) => rgb.g);
|
|
let blue = bucket.map((rgb) => rgb.b);
|
|
return new RGB(
|
|
Math.max(...red) - Math.min(...red),
|
|
Math.max(...green) - Math.min(...green),
|
|
Math.max(...blue) - Math.min(...blue)
|
|
);
|
|
});
|
|
let topRanges = ranges.map((rgb) => Math.max(rgb.r, rgb.g, rgb.b));
|
|
//let greatest = Math.max(...topRanges);
|
|
//let index = topRanges.indexOf(greatest);
|
|
let greatest = 0;
|
|
let index = -1;
|
|
for (let i = 0; i < topRanges.length; i++) {
|
|
//if (topRanges[i] >= greatest) {
|
|
if (topRanges[i] > greatest) {
|
|
greatest = topRanges[i];
|
|
index = i;
|
|
}
|
|
}
|
|
if (index == -1) {
|
|
// We just ran out of colors! Pad the buckets.
|
|
//while (buckets.length < n) {
|
|
// buckets.push([new RGB(0, 0, 0)]);
|
|
//}
|
|
break;
|
|
}
|
|
let [lo, hi] = medianCut(buckets[index], ranges[index]);
|
|
buckets.splice(index, 1, lo, hi);
|
|
}
|
|
|
|
if (buckets.length > n) {
|
|
throw new Error('xxx too many colors assigned');
|
|
}
|
|
decimated = buckets.map((bucket) => {
|
|
// Average the RGB colors in this chunk
|
|
let rgb = bucket
|
|
.reduce((acc, rgb) => acc.inc(rgb), new RGB(0, 0, 0))
|
|
.divide(bucket.length);
|
|
|
|
// Scale the average to the brightest
|
|
let avg_luma = rgb.luma();
|
|
let lumas = bucket.map((rgb) => rgb.luma());
|
|
let brightest = Math.max(...lumas);
|
|
if (avg_luma > 0) {
|
|
rgb = rgb.multiply(brightest / avg_luma).clamp();
|
|
}
|
|
|
|
// this also works pretty ok
|
|
// but i think keeping luma is better
|
|
//
|
|
/*
|
|
// 1) take the brightest luma
|
|
// 2) take the most saturated chroma
|
|
// 3) profit!
|
|
let lumas = bucket.map((rgb) => rgb.luma());
|
|
let brightest = Math.max(...lumas);
|
|
let saturations = bucket.map((rgb) => Math.max(rgb.r, rgb.g, rgb.b) - Math.min(rgb.r, rgb.g, rgb.b));
|
|
let saturation = Math.max(...saturations);
|
|
let saturatedIndex = saturations.indexOf(saturation);
|
|
let rgb = bucket[saturatedIndex];
|
|
let luma = rgb.luma();
|
|
if (luma > 0) {
|
|
rgb = rgb.multiply(brightest / luma).clamp();
|
|
}
|
|
*/
|
|
|
|
// pick the luma-brightest color in the bucket
|
|
// kinda nice but really aggressive with the colors
|
|
/*
|
|
let lumas = bucket.map((rgb) => rgb.luma());
|
|
let luma = Math.max(...lumas);
|
|
let rgb = bucket[lumas.indexOf(luma)];
|
|
*/
|
|
|
|
// Take the channel-brightest color in the bucket
|
|
// bad
|
|
//let rgb = bucket[bucket.length - 1];
|
|
|
|
// Take the luma-brightest color in the bucket
|
|
// wrong? bad
|
|
//let rgb = bucket.slice().sort((a, b) => b.luma() - a.luma())[bucket.length - 1];
|
|
|
|
// Take the median color in the bucket
|
|
// bad
|
|
//let rgb = bucket[bucket.length >> 1];
|
|
|
|
// Combine the brightest of each channel
|
|
// this is kinda good
|
|
/*
|
|
let rgb = new RGB(
|
|
Math.max(...bucket.map((rgb) => rgb.r)),
|
|
Math.max(...bucket.map((rgb) => rgb.g)),
|
|
Math.max(...bucket.map((rgb) => rgb.b))
|
|
);
|
|
*/
|
|
|
|
// combine the median of each channel
|
|
// sux
|
|
/*
|
|
let rgb = new RGB(
|
|
bucket.map((rgb) => rgb.r).sort((a, b) => b - a)[bucket.length >> 1],
|
|
bucket.map((rgb) => rgb.g).sort((a, b) => b - a)[bucket.length >> 1],
|
|
bucket.map((rgb) => rgb.b).sort((a, b) => b - a)[bucket.length >> 1]
|
|
);
|
|
*/
|
|
|
|
// Take the luma-median color in the bucket
|
|
//let rgb = bucket.slice().sort((a, b) => b.luma() - a.luma())[bucket.length >> 1];
|
|
|
|
// Take the brightest-channel median
|
|
//let rgb = bucket.slice()
|
|
// .sort((a, b) => Math.max(b.r, b.g, b.b) - Math.max(a.r, b.g, b.b))[bucket.length >> 1];
|
|
|
|
// And map into the Atari palette
|
|
let dists = palette.map((i) => rgb.difference(atariRGB[i]).magnitude());
|
|
let closest = Math.min(...dists);
|
|
let index = dists.indexOf(closest);
|
|
return palette[index];
|
|
});
|
|
decimated.sort((a, b) => a - b);
|
|
|
|
// Palette fits
|
|
return dither(decimated);
|
|
}
|
|
|
|
/**
|
|
* Read an image file into a buffer
|
|
* @param {string} src
|
|
* @returns {{width: number, height: number, rgba: Uint8Array}}
|
|
*/
|
|
async function loadImage(src) {
|
|
let image = await Jimp.read(src);
|
|
|
|
let width = image.bitmap.width;
|
|
let height = image.bitmap.height;
|
|
|
|
let aspect = width / height;
|
|
let dar = 2 / 1.2;
|
|
if (aspect > ((320 / 1.2) / 192)) {
|
|
// wide
|
|
width = 160;
|
|
height = Math.round((width * image.bitmap.height / image.bitmap.width) * dar);
|
|
if (height & 1) {
|
|
height++;
|
|
}
|
|
} else {
|
|
// tall
|
|
height = 192;
|
|
width = Math.round((height * image.bitmap.width / image.bitmap.height) / dar);
|
|
if (width & 1) {
|
|
width++;
|
|
}
|
|
}
|
|
image = image.resize(width, height);
|
|
|
|
let rgba = image.bitmap.data.slice();
|
|
return {
|
|
width,
|
|
height,
|
|
rgba,
|
|
};
|
|
}
|
|
|
|
function imageToLinearRGB(rgba) {
|
|
let input = [];
|
|
for (let i = 0; i < rgba.length; i += 4) {
|
|
input.push(new RGB(
|
|
rgba[i + 0],
|
|
rgba[i + 1],
|
|
rgba[i + 2]
|
|
).fromSRGB());
|
|
}
|
|
return input;
|
|
}
|
|
|
|
/**
|
|
* Read an image file, squish to 160px if necessary,
|
|
* and dither to 4 colors per scan line.
|
|
*
|
|
* @param {string} source path to source image file
|
|
* @returns {{width: number, height: number, lines: {palette: Array, output: Uint8Array}[]}}
|
|
*/
|
|
async function convert(source) {
|
|
|
|
let {
|
|
width,
|
|
height,
|
|
rgba
|
|
} = await loadImage(source);
|
|
|
|
if (width > 160) {
|
|
throw new Error(`expected <160px width, got ${width} pixels`);
|
|
}
|
|
|
|
if (height > 192) {
|
|
throw new Error(`expected <192px height, got ${height} pixels`);
|
|
}
|
|
|
|
if (rgba.length != width * 4 * height) {
|
|
console.log(`
|
|
width: ${width}
|
|
height: ${height}
|
|
rgba.length: ${rgba.length}`)
|
|
throw new Error('inconsistent data size');
|
|
}
|
|
|
|
let input = imageToLinearRGB(rgba);
|
|
|
|
if (input.length != width * height) {
|
|
console.log(`
|
|
width: ${width}
|
|
height: ${height}
|
|
rgba.length: ${input.length}`)
|
|
throw new Error('inconsistent data size on input');
|
|
}
|
|
|
|
// Start with all colors usable with regular CTIA modes
|
|
// (not the 16-luminance special mode on GTIA)
|
|
let allColors = [];
|
|
for (let i = 0; i < 256; i += 2) {
|
|
allColors.push(i);
|
|
}
|
|
|
|
let left = [], right = [];
|
|
let padding = 0;
|
|
if (width < 160) {
|
|
padding = 160 - width;
|
|
|
|
let black = new RGB(0, 0, 0);
|
|
left = repeat(black, padding >> 1);
|
|
right = repeat(black, padding + 1 >> 1);
|
|
}
|
|
|
|
let lines = [];
|
|
for (let y = 0; y < height; y++) {
|
|
let inputLine = input
|
|
.slice(y * width, (y + 1) * width);
|
|
|
|
if (padding) {
|
|
inputLine = left.concat(inputLine, right);
|
|
}
|
|
if (y > 0) {
|
|
let error = lines[y - 1].error;
|
|
inputLine = inputLine.map((rgb, x) => rgb.add(error[x]).clamp());
|
|
}
|
|
let line = decimate(inputLine, allColors, 4, y);
|
|
lines.push(line);
|
|
}
|
|
return {
|
|
width: width + padding,
|
|
height,
|
|
lines
|
|
};
|
|
}
|
|
|
|
|
|
function indexedToBitmap(width, nbits, src, dest) {
|
|
let nbytes = width * nbits / 8;
|
|
let x = 0;
|
|
for (let i = 0; i < nbytes; i++) {
|
|
let a = 0;
|
|
for (let b = 0; b < 8; b += nbits) {
|
|
a <<= nbits;
|
|
a |= src[x++];
|
|
}
|
|
dest[i] = a;
|
|
}
|
|
}
|
|
|
|
function byte2byte(arr) {
|
|
let lines = [];
|
|
for (let i=0; i < arr.length; i++) {
|
|
lines.push(`.byte ${arr[i]}`);
|
|
}
|
|
return lines.join('\n');
|
|
}
|
|
|
|
//let [even, odd] = [0, 1].map((bit) => (arr) => arr.filter((_item, index) => (index & 1) === bit));
|
|
function even(arr) {
|
|
return arr.filter((_item, index) => !(index & 1));
|
|
}
|
|
function odd(arr) {
|
|
return arr.filter((_item, index) => (index & 1));
|
|
}
|
|
|
|
function genAssembly(width, height, nbits, lines) {
|
|
let stride = width * nbits / 8;
|
|
let half = stride * height / 2;
|
|
let frame = {
|
|
palette1: new Uint8Array(height),
|
|
palette2: new Uint8Array(height),
|
|
palette3: new Uint8Array(height),
|
|
bitmap: new Uint8Array(stride * height),
|
|
};
|
|
for (let y = 0; y < height; y++) {
|
|
let base = 0;
|
|
frame.palette1[y] = lines[y + base].palette[1];
|
|
frame.palette2[y] = lines[y + base].palette[2];
|
|
frame.palette3[y] = lines[y + base].palette[3];
|
|
indexedToBitmap(
|
|
width,
|
|
nbits,
|
|
lines[y + base].output,
|
|
frame.bitmap.subarray(y * stride, (y + 1) * stride)
|
|
);
|
|
}
|
|
|
|
return `.data
|
|
.export frame1_top
|
|
.export frame1_bottom
|
|
|
|
.export frame1_palette1_even
|
|
.export frame1_palette1_odd
|
|
.export frame1_palette2_even
|
|
.export frame1_palette2_odd
|
|
.export frame1_palette3_even
|
|
.export frame1_palette3_odd
|
|
|
|
.export displaylist
|
|
|
|
.segment "BUFFERS"
|
|
|
|
.align 4096
|
|
frame1_top:
|
|
${byte2byte(frame.bitmap.slice(0, half))}
|
|
|
|
.align 4096
|
|
frame1_bottom:
|
|
${byte2byte(frame.bitmap.slice(half))}
|
|
|
|
.align 128
|
|
frame1_palette1_even:
|
|
${byte2byte(even(frame.palette1))}
|
|
|
|
.align 128
|
|
frame1_palette1_odd:
|
|
${byte2byte(odd(frame.palette1))}
|
|
|
|
.align 128
|
|
frame1_palette2_even:
|
|
${byte2byte(even(frame.palette2))}
|
|
|
|
.align 128
|
|
frame1_palette2_odd:
|
|
${byte2byte(odd(frame.palette2))}
|
|
|
|
.align 128
|
|
frame1_palette3_even:
|
|
${byte2byte(even(frame.palette3))}
|
|
|
|
.align 128
|
|
frame1_palette3_odd:
|
|
${byte2byte(odd(frame.palette3))}
|
|
|
|
|
|
|
|
|
|
.align 1024
|
|
displaylist:
|
|
; 24 lines overscan
|
|
.repeat 2
|
|
.byte $70 ; 8 blank lines
|
|
.endrep
|
|
; include a DLI to mark us as frame 0
|
|
.byte $f0 ; 8 blank lines
|
|
|
|
; ${height} lines graphics
|
|
; ANTIC mode e (160px 2bpp, 1 scan line per line)
|
|
.byte $4e
|
|
.addr frame1_top
|
|
.repeat ${height / 2 - 1}
|
|
.byte $0e
|
|
.endrep
|
|
.byte $4e
|
|
.addr frame1_bottom
|
|
.repeat ${height / 2 - 1}
|
|
.byte $0e
|
|
.endrep
|
|
|
|
.byte $41 ; jump and blank
|
|
.addr displaylist
|
|
`;
|
|
}
|
|
|
|
/**
|
|
* Double width and save as an image file
|
|
* @param {number} width
|
|
* @param {number} height
|
|
* @param {{output: number[], palette: number[]}} lines
|
|
* @param {string} dest
|
|
*/
|
|
async function saveImage(width, height, lines, dest) {
|
|
let width2 = width * 2;
|
|
let stride = width2 * 4;
|
|
let rgba = new Uint8Array(stride * height);
|
|
|
|
for (let y = 0; y < height; y++) {
|
|
let {output, palette} = lines[y];
|
|
for (let x = 0; x < width2; x++) {
|
|
let i = x >> 1;
|
|
if (i >= width) {
|
|
throw new Error('i >= width');
|
|
}
|
|
//let rgb = atariRGB[palette[output[i]]].fromLinear();
|
|
let rgb = atariRGB[palette[output[i]]].toSRGB();
|
|
|
|
rgba[y * stride + x * 4 + 0] = rgb.r;
|
|
rgba[y * stride + x * 4 + 1] = rgb.g;
|
|
rgba[y * stride + x * 4 + 2] = rgb.b;
|
|
rgba[y * stride + x * 4 + 3] = 255;
|
|
}
|
|
}
|
|
|
|
let image = await new Promise((resolve, reject) => {
|
|
new Jimp({
|
|
data: rgba,
|
|
width: width2,
|
|
height,
|
|
}, (err, image) => {
|
|
if (err) reject(err);
|
|
resolve(image);
|
|
});
|
|
});
|
|
await image.resize(Math.round(width2 * 2), height * 2);
|
|
await image.writeAsync(dest);
|
|
}
|
|
|
|
async function main() {
|
|
if (process.argv.length < 3) {
|
|
console.error("Usage: node dither-image.js source-image.jpg dest-asm.s");
|
|
process.exit(1);
|
|
}
|
|
|
|
let nbits = 2;
|
|
|
|
let {width, height, lines} = await convert(process.argv[2], nbits);
|
|
|
|
let asm = genAssembly(width, height, nbits, lines);
|
|
writeFileSync(process.argv[3], asm, "utf-8");
|
|
|
|
await saveImage(width, height, lines, `${process.argv[3]}.png`);
|
|
|
|
process.exit(0);
|
|
}
|
|
|
|
main(); |