blocky-6502/index.html
2023-07-03 05:53:24 -07:00

158 lines
No EOL
5.6 KiB
HTML

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>Block video encoding test</title>
<style type="text/css">
.stretchy {
width:267px;
height: 160px;
object-fit: fill;
image-rendering: pixelated;
}
</style>
</head>
<body>
<h1>Block video encoding test</h1>
<p>
Test work for a video encoding using Atari 800-family GTIA grayscale mode on top of text cells.
This allows a "block dictionary" of 128 2x8-pixel blocks on an 80x160 grayscale image,
at cost of 1840 bytes per full frame or 800 bytes to reuse previous blocks.
</p>
<p>
Currently just converts to grayscale and counts up unique blocks.
Next step: decimate if &gt; 128 unique blocks per image, and combine
the most similar blocks in the output.
</p>
<h2>Source video</h2>
<div>
<video id="source" src="llamigos.webm" class="stretchy" muted controls playsinline></video>
</div>
<h2>Work canvas</h2>
<div>
<canvas id="work" width="80" height="160" class="stretchy"></canvas>
</div>
<div>
<span id="block-count">n/a</span> blocks per frame
</div>
<script type="text/javascript">
let width = 80;
let height = 160;
let blockWidth = 2;
let blockHeight = 8;
let widthBlocks = width / blockWidth;
let heightBlocks = height / blockHeight;
function fromSRGB(val) {
if (val <= 0.04045) {
return val / 12.92;
}
return ((val + 0.055) / 1.055) ** 2.4;
}
function toSRGB(val) {
if (val <= 0.0031308) {
return val * 12.92;
}
return (val * 1.055) ** (1.0 / 2.4) - 0.055;
}
function luma(r, g, b) {
return r * 0.299 + g * 0.586 + b * 0.114;
}
function update() {
let ctx = work.getContext('2d');
let pixels = new Uint8Array(width * height);
// Extract the luma
ctx.drawImage(source, 0, 0);
let bits = ctx.getImageData(0, 0, width, height);
let data = bits.data;
for (let y = 0; y < height; y++) {
for (let x = 0; x < width; x++) {
let i = y * width + x;
let r = fromSRGB(data[i * 4] / 255);
let g = fromSRGB(data[i * 4 + 1] / 255);
let b = fromSRGB(data[i * 4 + 2] / 255);
let grayLinear = luma(r, g, b);
let gray = toSRGB(grayLinear);
let gray16 = Math.round(gray * 15);
pixels[i] = gray16;
}
}
let blocks = [];
let chars = new Uint16Array(widthBlocks * heightBlocks);
for (let n = 0, y = 0; y < heightBlocks; y++) {
for (let x = 0; x < widthBlocks; x++, n++) {
let i = y * widthBlocks + x;
blocks[i] = new Uint8Array(blockWidth * blockHeight);
chars[n] = i;
for (let yy = 0; yy < blockHeight; yy++) {
for (let xx = 0; xx < blockWidth; xx++) {
let ii = yy * blockWidth + xx;
blocks[i][ii] = pixels[(y * blockHeight + yy) * width + (x * blockWidth + xx)];
}
}
}
}
// Now we have 800 blocks for 80x160 image
// But we can only use 128 + their mirror images
//
// First pass: sort.
let zero = "0".charCodeAt(0);
// Convert the 4bpp pixel indices into hex strings
let blockMap = {};
let keys = [];
for (let i = 0; i < blocks.length; i++) {
let key = blocks[i].map((n) => n.toString(16)).join('');
console.log(key);
if (!blockMap[key]) {
blockMap[key] = blocks[i];
keys.push(blockMap[key]);
}
}
let span = document.querySelector('#block-count');
span.textContent = `${keys.length}`;
for (let y = 0; y < height; y++) {
for (let x = 0; x < width; x++) {
let i = y * width + x;
let gray16 = pixels[i];
let gray256 = Math.round(gray16 * 255 / 15);
data[i * 4] = gray256;
data[i * 4 + 1] = gray256;
data[i * 4 + 2] = gray256;
}
}
ctx.putImageData(bits, 0, 0);
}
let timer = null;
source.addEventListener('playing', () => {
if (!timer) {
timer = setInterval(update, 1000 / 10);
}
update();
});
source.addEventListener('pause', () => {
if (timer) {
clearInterval(timer);
timer = null;
}
});
</script>
</body>
</html>